Electronic ferroelectricity in carbon-based systems: from reality of organic conductors to promises of polymers and graphene nano-ribbons

نویسندگان

  • Natasha Kirova
  • Serguei Brazovskii
چکیده

Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electrooptical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Quantum modeling of light absorption in graphene based photo-transistors

Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...

متن کامل

Design and Optimization of Input-Output Block using Graphene Nano-ribbon Transistors

In the electronics industry, scaling and optimization is final goal. But, according to ITRS predictions, silicon as basic material for semiconductors, is facing physical limitation and approaching the end of the path. Therefore, researchers are looking for the silicon replacement. Until now, carbon and its allotrope, graphene, look to be viable candidates. Among different circuits, IO block is ...

متن کامل

A Density Functional Theory Study of Boron Nitride Nano-Ribbons

The electronic and structural properties of pristine and carbon doped (C-doped) boron nitride nano-ribbons(BNNRs) have been studied employing density functional theory (DFT) calculations. Total energies, gapenergies, dipole moments, and quadrupole coupling constants (qcc) have been calculated in the optimizedstructures of the investigated BNNRs. The results indicated that the stability and gap ...

متن کامل

Carbon-Based Electronics: A Computational Study

Carbon-based materials such as carbon nanotubes (CNTs) and Graphene nano-ribbons (GNRs) have been extensively studied in recent years due to their exceptional electronic, opto-electronic, and mechanical properties. We employed the non-equilibrium Green’s function (NEGF) formalism to analyze the electronic and optoelectronic properties of CNTand GNRbased devices numerically. The steady-state and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017